Probabilistic Joint State Estimation for Operational Planning

نویسندگان

  • Yang Weng
  • Rohit Negi
  • Marija D. Ilić
چکیده

Due to a high penetration of renewable energy, power systems operational planning today needs to capture unprecedented uncertainties in a short period. Fast probabilistic state estimation (SE), which creates probabilistic load flow estimates, represents one such planning tool. This paper describes a graphical model for probabilistic SE modeling that captures both the uncertainties and the power grid via embedding physical laws, i.e., KCL and KVL. With such a modeling, the resulting maximum a posteriori (MAP) SE problem is formulated by measuring state variables and their interactions. To resolve the computational difficulty in calculating the marginal distribution for interested quantities, a distributed message passing method is proposed to compute MAP estimates using increasingly available cyber resources, i.e., computational and communication intelligence. A modified message passing algorithm is then introduced to improve the convergence and optimality. Simulation results illustrate the probabilistic SE and demonstrate the improved performance over traditional deterministic approaches via (1) the more accuracy mean estimate, (2) the confidence interval covering the true state, and (3) the reduced computational time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

Loss Reduction in a Probabilistic Approach for Optimal Planning of Renewable Resources

Clean and sustainable renewable energy technology is going to take responsibility of energy supply in electrical power systems. Using renewable sources improve the environment and reduce dependence on oil and other fossil fuels. In distribution power system, utilizing of wind and solar DGs comprises some advantages; consist of loss and emission reduction, and also improvement of voltage profile...

متن کامل

Recurrent Human Pose Estimation

Human pose estimation is the task of estimating the joint locations of one or multiple people within an image. It is a core challenge in computer vision because it forms the foundation of more complex tasks such as activity recognition and motion planning. For example, joint locations have been used to supplement other visual features to determine the trajectory of a person through a sequence o...

متن کامل

On Relationships between Key Concepts of Operational Level Planning

The Australian operational level planning doctrine, Joint Military Appreciation Process (JMAP), comprises four consecutive and iterative steps, namely: Mission Analysis (MA), Course of Action (COA) Development, COA Analysis, and Decision & Execution. All four steps are supported by an integral operational level intelligence function called Joint Intelligence Preparation of the Battlespace (JIPB...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017